
 

 1 of 24 

 

Team Gray’s 2007 Urban Challenge Vehicle 

Paul G. Trepagnier, Jorge E. Nagel, Powell M. Kinney, Matthew T. Dooner,  
Sergey V. Drakunov, Aaron S. Lee, Michael T. Dewenter, Matt Hardey, Eric V. Gray 

GrayMatter, Inc., Metairie, LA, 70001, 
 Email: teamgray@graymatterinc.com 

 

DARPA Urban Challenge 
Technical Paper – Team Gray 

 
Submission Date: June 1, 2007 

 

Executive Summary
It is the opinion of Team Gray that the Urban Challenge poses primarily a 
software engineering problem, since the individual hardware components needed 
for the Urban Challenge already exist in the commercial sector.  These hardware 
components need to be reliably integrated with custom software logic to achieve 
the goals of the Urban Challenge.  

Team Gray has addressed many of these concerns in the design of its 
Autonomous Vehicle System (AVS). The GrayMatter AVSTM is a commercially 
available autonomous vehicle platform designed as a generic framework for a 
variety of autonomous vehicle applications.  The AVS provides significant 
improvements in the user interface, system reliability, and performance, and it is a 
substantially more compact and energy efficient evolution of the autonomous 
vehicle system employed in the team’s 2005 Urban Challenge vehicle.   

Through the development of its AVS system and its integration of advanced 
sensor technology, Team Gray has created an autonomous vehicle that it strongly 
believes can successfully complete the 2007 DARPA Urban Challenge. 

 

DISCLAIMER: The information contained in this paper does not represent the official policies, 
either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA) or the 
Department of Defense. DARPA does not guarantee the accuracy or reliability of the information 
in this paper 
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1. Introduction 
Team Gray was created to compete in the 2005 DARPA Grand Challenge.  After the success of 
KAT-5 in the Grand Challenge, a new company, GrayMatter, Inc., was formed to commercialize 
and advance the technologies developed by Team Gray.  GrayMatter, Inc. employees now 
comprise the majority of Team Gray, and Team Gray now relies on the stability and reliability of 
GrayMatter's AVSTM to provide the hardware and software platform for its Urban Challenge 
vehicle.  Team Gray provides the medium for GrayMatter to develop and showcase the advances 
outlined in this paper. 
 
Besides retaining all of the core members from Team Gray’s original 2005 Grand Challenge 
team, GrayMatter, Inc. has added several more engineers and software developers to greatly 
broaden the scope of the team’s capabilities.  The company’s additions have focused on bringing 
together members who are the best in their respective fields and whose skill sets create new 
possibilities and directions for the team to pursue. 
 
2. Overview 
The 2007 DARPA Urban Challenge poses an extremely daunting problem to be solved: 
autonomous navigation in a dynamic urban environment.  The Urban Challenge retains all of the 
difficulties and technical challenges of the previous Grand Challenge, of which only four 
vehicles successfully completed, and adds many new difficult problems for autonomous vehicles 
to solve.   
 
The most significant problem facing autonomous vehicles in the Urban Challenge is no different 
than in the previous two Grand Challenges.  Each autonomous vehicle has exactly one 
opportunity to fully complete the mission; so a failure in any of the vehicle’s critical systems will 
result in that vehicle losing the race.  Since there is no opportunity for a second chance, all 
systems must be as reliable as possible.  Analysis of the results from the 2005 DARPA Grand 
Challenge shows that either simple hardware or software failures ended the race for many of the 
teams that did not finish.   
 
Besides the reliability problem, the Urban Challenge poses several significant technical 
challenges that must be solved through innovative hardware and software design: 

• GPS data will be frequently unavailable due to the buildings and other obstructions that 
exist in an urban environment.  Since all required elements of the autonomous vehicle’s 
mission are specified via GPS coordinates, additional localization information will be 
needed to successfully complete an Urban Challenge mission. 

• Along with static obstacles, many moving vehicles will be present in the urban 
environment.  This requires the vehicle’s software to track, interact with, and at times 
predict the movements of other vehicles. 

• The autonomous vehicle must obey all applicable traffic laws at all times.  This requires 
a complex software system to track the state of both the autonomous vehicle and the 
environment, particularly in intersections. 

• The autonomous vehicle will be required to perform many advanced maneuvers, such as 
passing other vehicles, parking, performing a U-turn, performing a left turn through a 
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lane of oncoming traffic, and navigating through heavy traffic.  This will require 
intelligent navigation software and precise driving capabilities. 

• In certain areas of the course, the road will be specified with only a sparse set of 
waypoints, and the autonomous vehicle must use its sensors to detect the appropriate 
path to follow.  

 
This list does not comprise all of the design problems faced by autonomous vehicles competing 
in the Urban Challenge, but it illustrates the most significant.  The problems posed by the Urban 
Challenge can further be classified into three primary requirements: hardware and software 
reliability, accurate sensing capabilities, and an extremely complex software system. 
 
Team Gray firmly believes that hardware and software reliability is the most important design 
problem that must be solved, so the team’s approach to the Urban Challenge is centered on 
reliability.  In addition, the team believes that the Urban Challenge primarily poses a software 
engineering problem, since the individual hardware components needed for the Urban Challenge 
exist in the commercial sector.  These hardware components need to be reliably integrated with 
custom software logic to achieve the goals of the Urban Challenge.  
 
The next sections will describe how Team Gray will approach the design requirements of 
hardware and software reliability, accurate sensing capabilities, and the development and 
ongoing management of an extremely complex software system.  
 

3. System Design  
3.1 Vehicle 
Team Gray is using a 2007 Ford Escape Hybrid, which contains both a typical four-cylinder 
engine and a 330-volt electric motor/generator, as its vehicle platform for the Urban Challenge. 
This 330-volt electrical system provides a clean and sufficient source of power for the additional 
equipment installed in the vehicle.   In addition, the vehicle’s electrical system provides enough 
power for all of the additional equipment installed on the vehicle for the purposes of completing 
the Urban Challenge. The short wheelbase, narrow width, and Team Gray’s familiarity with this 
platform made the Escape Hybrid the ideal solution to the Urban Challenge. 
 
Team Gray worked with Electronic Mobility Controls (EMC) to interface with the primary 
vehicle systems (steering wheel, gear shift, accelerator, and brake) and secondary vehicle 
systems (turn signals, ignition, and emergency brake) via the AEVIT drive-by-wire system. This 
is a commercially available solution designed to outfit vehicles for handicapped drivers that has 
been specifically modified for use in autonomous vehicles. It consists of actuators and servos 
mounted on the steering column, brake pedal, throttle wire, emergency brake, and automatic 
transmission.  It is also able to control the vehicle’s turn signals and ignition.  By using the 
AEVIT system, Team Gray is able to control all aspects of the vehicle via one fully integrated 
system, reducing overall complexity and eliminating points of failure.  In addition, the AEVIT 
system is approved by the Department of Transportation and contains several layers of 
redundancy in each of the actuators and power systems.  Team Gray has been using the AEVIT 
system for over two years, and it has proven to be an extremely reliable component of the team’s 
autonomous vehicles. 
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The AEVIT system also provides the E-Stop mechanism for the autonomous vehicle.  Team 
Gray worked with EMC to design a custom E-Stop implementation that satisfies the rules of the 
Urban Challenge.  When an E-Stop is triggered, the vehicle’s primary braking system is applied, 
and then the vehicle’s ignition is turned off.  Finally, after a slight delay, the vehicle’s emergency 
brake is applied and held.  This ensures that the vehicle will stop effectively when an E-Stop 
command is received and be able to remain stopped even if the vehicle is on an incline. 
3.2 Hardware Platform 
The hardware platform for Team Gray’s autonomous vehicle is based on GrayMatter, Inc.’s 
Autonomous Vehicle System (AVS).  The AVS is a commercially available autonomous vehicle 
platform that has been designed for a variety of autonomous driving applications.  In addition to 
its use in the Urban Challenge, it is currently being marketed for autonomous testing of vehicles 
and tires.  The AVS was designed initially as a more compact version of the systems in Team 
Gray’s KAT-5, but it has been improved significantly over the past 18 months.  

 
The AVS is comprised of a hardware layer and a software layer.  The hardware layer consists of 
several custom-printed circuit boards that contain all of the wiring necessary to both provide 
power to and communicate with external sensors such as GPS receivers or obstacle sensors. 
GrayMatter’s AVS provides all of the hardware required to integrate a wide variety of sensors. 
By implementing the majority of the physical wiring on printed circuit boards rather than wiring 
it by hand, the hardware layer in the AVS has become much more reliable than other approaches.  
These circuit boards also interface with E-Stop radios and the AEVIT drive-by-wire system.  The 
hardware layer contains a programmable logic device that monitors the operation of the 
hardware and is capable of power-cycling failed components or even stopping the vehicle should 
a fatal error be detected.   
3.3 Intra-system Communications 
Communication within the individual components of the AVS system is segmented based upon 
the criticality and punctuality of the contained message.  Vehicle control messages between the 
planning software and the AVS hardware are transmitted over an independent Controller Area 
Network (CAN) [1,2].  CAN has an integrated priority system, provides predictable real-time 
communications, and provides significant robustness against electro-magnetic interference. 
Therefore, it is an ideal choice for the most critical communications in the vehicle.  Emergency 
control and, if necessary, stopping of the vehicle take the highest priority and will supersede any 
other communication on the CAN bus.  Barring the infrequent presence of emergency messages, 
the control communications between the planning software and the AVS hardware are able to 
occur unhindered within a predetermined amount of time.  As detailed in [3], CAN is well suited 
to complex real-time applications, particularly in the automotive fields. 
 
A separate CAN bus is used for communication with sensors designed for automotive use, which 
may not be capable of other forms of communication. By separating the control network from 
the sensor network, control packets are prevented from preempting the sensor packets. This 
separation also prevents a malfunctioning device on the sensor network from disrupting the 
control CAN bus, as such a disruption could compromise the safe operation of the vehicle. 
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Higher bandwidth communication between the sensors and the planning computers occurs over 
Fast Ethernet. The high precision sensors incorporated into the AVS for this application generate 
large amounts of data that are well suited to the high bandwidth, low latency, and fault tolerance 
offered by Fast Ethernet. Both the position data from the localization sensor and object data from 
the obstacles scanners contain timestamps that negate the need for deterministic transmission of 
their data. The position and obstacle data can be reconstructed and reordered within the planning 
computers to rebuild the sensors’ view of the world.  
3.4 Sensors 
An autonomous vehicle needs an accurate picture of the surrounding environment and its own 
global position to navigate safely in any environment.  The added challenges of operating in an 
urban environment make the autonomous vehicle’s sensors extremely important aspects of its 
successful operation.  The following subsections describe the different types of sensors installed 
on the autonomous vehicle, and how they help solve the challenges that were identified in 
Section 2. 

3.4.1 Localization Sensors 
One of the challenges for a robot entering the Urban Challenge lies in building a map of the 
world around the robot and locating itself within that map. All of the data collected from the 
obstacle and lane detection sensors must either be referenced to some absolute location in the 
world or some location relative to the robot. Without accurate information about the location, 
heading, and velocity of the robot, other data can become useless. Planning a route within the 
world and in conjunction with traffic is simplified by translating all information gathered about 
the world around the robot to a set of global coordinates. Doing this translation requires exact 
knowledge of the location of the vehicle when the data were collected. From this information, a 
map of the area surrounding the robot can be created, and from this map the path of the robot can 
be planned. 
 
Fundamentally, planning the path of the robot and synthesizing the data collected from the 
sensors requires very precise localization information. To obtain sufficiently accurate 
localization information, Team Gray utilizes the high precision RT3000 from Oxford Technical 
Solutions. The RT3000 incorporates two L1/L2 GPS receivers with Omnistar HP corrections to 
provide position measurements accurate to within 0.1 meters and heading measurements accurate 
to within 0.1 degrees. The RT3000 includes an inertial system to provide acceleration and roll 
information. In addition to the accelerometers and gyroscopes within the inertial system, Team 
Gray is providing wheel speed input from one of the Ford Escape Hybrid's rear ABS wheel 
speed sensors via GrayMatter’s ABS Interface board.  The RT3000 internally integrates the data 
from each source using a combination of Kalman filtering [4,5] and other proprietary algorithms. 
 
Within the RT3000, a Pentium computer, running the QNX hard real-time operating system, 
monitors the measurements from the GPS and inertial systems. As this system collects the 
position and movement information, it transparently compensates for drift in the inertial system 
and outages in the GPS system before the data is transmitted to the AVS.  The corrected data is 
then sent via Ethernet and CAN to the AVS, and it is transmitted via a dedicated CAN bus to the 
obstacle scanners. Both systems are then able to correlate obstacles, the robot's location, and 
mission waypoints to the same coordinate set.  
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The RT3000 proved its reliability throughout the 2005 Grand Challenge, and it continues to be a 
very capable localization sensor.  Reviewing the data gathered by KAT-5 during the Grand 
Challenge Event, the team verified that the RT3000 had operated free of major error during the 
entire race.  Even in instances when the GPS signal was partially or completely lost, the sensor 
compensated for the lost signal properly.  Figure 1 shows data gathered from the steering 
controller during KAT-5’s travel through the tunnel during the National Qualifying Event, in 
which GPS signal was completely lost for between 10 and 15 seconds.  The fact that the vehicle 
was only 50 centimeters off of the desired path upon reacquisition of GPS signal speaks both to 
the reliability of the RT3000 sensor and to the ability of the control systems used by Team Gray 
to work well in conjunction with data emanating from the RT300 unit. 

 
Figure 1: Upon exiting a 100-foot tunnel during the 2005 NQE, in which all 
GPS signal was lost, the RT3000 experienced a consistent jump of just over 0.5 
meters. Even with this sudden change in the external state, the steering 
controller maintained control and was able to continue with its normal stable 
operation within seconds. 
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3.4.2 Obstacle Sensors 
Team Gray has chosen to use two Ibeo ALASCA XT fusion systems for its primary obstacle 
avoidance sensors.  Each ALASCA XT fusion system is comprised of two Ibeo ALASCA XT 
laser scanners and one Ibeo Electronic Control Unit (ECU). Each ALASCA XT laser scanner 
uses four eye-safe lasers in conjunction with a rotating mirror to sweep a 270° arc in front of the 
sensor.  All four beams emanate from the unit on 4 different scanning planes (described in [6]), 
which are offset by 0.8° when the mirror is pointed directly ahead and 0° directly to the sides.  
By using multiple lasers in this manner, the ALASCA XT laser scanner is capable of maintaining 
a sufficient field of view even as the vehicle pitches and rolls during maneuvers.  
 
Because of the flexibility of its field of view, the ALASCA XT laser scanners are rigidly 
mounted to the vehicle at a height of approximately 0.5 meters from the ground.  By mounting 
the sensor at this relatively low height, the sensor can detect smaller obstacles more effectively 
than if it were mounted higher up on the vehicle.  Most other horizontally mounted sensors are 
not as effective when mounted this low because their scanning plane is frequently obstructed by 
the ground when the vehicle is pitching. 
 
The Ibeo ALASCA XT laser scanners can also operate in a wide range of weather conditions due 
to its ability to detect multiple echoes from a single laser beam.  If the beam reaches a 
transparent object, such as a pane of glass or a raindrop, it will create a partial echo that is 
recognized and qualified as such by the laser scanner.  This Multi-Target Capability, as termed 
by Ibeo, allows the ALASCA XT laser scanners to operate in many different types of inclement 
weather, including rainstorms. 
 
Another advantage of Ibeo’s advanced sensor technology is the ECU’s ability to incorporate the 
laser angle and ranging information from two ALASCA XT sensors to create a map of the 
objects surrounding the vehicle.  After filtering to remove the uninteresting laser echoes, such as 
raindrops and the ground, the Fusion system, as it is called by Ibeo, combines the data from both 
laser scanners and then fits a polygon around groups of echoes.  Next, the software algorithms in 
the ECU calculate each obstacle’s velocity vector and identify each obstacle with its own unique 
identification number.  To reduce communications overhead, the ECU only transmits obstacles 
that satisfy a specific priority classification algorithm.  Team Gray has chosen an algorithm 
based upon both object velocity and distance from the vehicle as the primary criteria for this 
classification.  The resulting polygons are transmitted via CAN to the AVS.  Since all of this 
processing is done locally on the ECU, the CPU cluster in the AVS is spared this additional 
processing overhead. 
 
Most vehicles that need full 360° scanner coverage use one ALASCA XT Fusion system in the 
front of the vehicle and one standalone ALASCA XT laser scanner in the rear of the vehicle.  
This approach uses two Electronic Control Units (one for the fusion system and one for the rear 
sensor), but leaves the system vulnerable to single points of failure.  As in the previous Grand 
Challenge, one of Team Gray’s primary design philosophies is to remove single points of failure 
whenever possible. By using two ALASCA XT Fusion systems, each of which has a complete 
360° field of view, Team Gray has two completely redundant views of the surrounding 
environment.  Each fusion system has a sensor on one of the front corners of the vehicle and a 
sensor on the opposite rear corner of the vehicle, as illustrated in Figure 2, along with its own 
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ECU. 
 

 
Figure 2: Team Gray’s sensor strategy incorporates two Ibeo ALASCA XT 
Fusion systems.  Each system has a complete 360° view of the vehicle’s 
surroundings.  With two such systems, not only is the view of an object more 
complete, but a failure in one of the Fusion systems will not affect the vehicle’s 
field of view.  

 
The collection of obstacles returned from both fusion systems are incorporated into the vehicle’s 
obstacle repository.  In the event that one fusion system fails to return a list of obstacles, the 
vehicle seamlessly continues operation with the other system without losing any of its field of 
view.  When the failure of a fusion system is detected, the hardware layer of the AVS will 
attempt to reboot the faulty fusion system by powering down the sensor temporarily in hope that 
it will recover properly upon restarting. 
3.4.3 Lane/Road Detection Sensors 
Since the Urban Challenge rules specify that an autonomous vehicle must find and follow the 
proper lane/road in cases where only a sparse collection of waypoints identify the lane/road, an 
autonomous vehicle must be able to identify the proper lane or road in real-time.  To solve this 
problem, Team Gray is using a video-based lane-detection system from Iteris, Inc.  Iteris’ Lane 
Departure Warning (LDW) system is currently available in several consumer vehicles and as an 
installable option on many different models of heavy trucks.  Iteris has supplied Team Gray with 
a modified version of their heavy truck LDW system for use in our autonomous vehicle. 
 
The Iteris LDW system uses an optical sensor and image processing system to detect and track 
lane markings.  A conventional imaging sensor in the LDW system creates a two dimensional 
digitized picture of the area ahead of the vehicle that the LDW system searches for lane 
markings.  It is installed in the cabin of the vehicle, at the top of the glass windshield.  The LDW 
system provides the autonomous vehicle with the location of the left and right lane markings, the 
type (solid, dashed, etc.) of the left and right lane markings, the angle of the vehicle within the 
lane, and the curvature of the lane.  This information is provided to the AVS software at a rate of 
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25 times per second via CAN.  The information from the Iteris LDW system is used to build a 
model of the current lane that can be used by the vehicle’s software systems to adjust the 
vehicle’s planned path to better adhere to the lane model. 
 
Since it is primarily used in production vehicles sold in the United States, the Iteris LDW system 
reliably identifies all types of lane markings that are used on American roads.  In addition, 
testing has shown that the Iteris LDW sensor can, in the absence of lane markings, also detect the 
edges of the road in most scenarios.  

3.5 Software Platform 
The Urban Challenge poses many difficult technical challenges, some of which require 
innovative, large-scale software solutions.  The volume and complexity of the software needed 
for an autonomous vehicle to operate successfully in an urban environment can easily 
overwhelm software architectures that are not designed to handle it.  Fortunately, the software 
architecture of the GrayMatter AVS helps reduce this development burden. 
 
GrayMatter’s AVS was designed as a generic autonomous application framework [7, 8] that can 
be used for many different types of autonomous vehicle applications.  A framework is a software 
reuse technique where there is a skeleton of an application that can be customized by the 
application developer [9,10].  The first application developed on the AVS platform was an 
autonomous system for testing consumer vehicles and vehicle tires.   This proved the reliability 
and flexibility of the software in the AVS as automotive testing facilities demand safe operation 
of autonomous vehicles even in the event of hardware or software failures.  Significant emphasis 
will be placed on the AVS software architecture in the following sections since it enables Team 
Gray to develop higher quality and more complex software at an unprecedented pace.  A detailed 
discussion of the AVS software framework is available in [11]. 
 
As with KAT-5, Team Gray has again decided to program a majority of the software using the 
Java Programming Language. While some studies point to Java’s poor performance when 
compared to other lower-level languages for scientific computing (see analysis in [12]), Java 
quickly makes up for its deficiencies during development, where its strong type checking and 
built-in multithreading support save the programmer a great amount of effort. Java also lends 
itself to a modular and independent design scheme. Java’s simple language semantics, platform 
independence, strong type checking, and support for concurrency make it a solid choice for high 
integrity systems such as autonomous vehicles [13].  Because of the platform-independence of 
Java, the same code base can be run on a varied number of hardware systems with reliable and 
repeatable results. 
 
The AVS software framework uses several different software design patterns [14] or design 
principles to reduce the complexity of designing autonomous vehicle applications.  Each of these 
design patterns has been proven successful at reducing complexity and improving the reliability 
of software development in enterprise application development, but they have yet to be applied 
to the development of autonomous vehicle applications.   
 
One of the primary software design principles used by GrayMatter in the AVS software 
framework is the Separation of Concerns [15] paradigm, which reduces complexity in 
development by breaking a large problem into a set of loosely coupled sub-problems that are 
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designed to be easier to solve.   The goal of Team Gray during the development process has been 
to separate the software system into as many distinct components as possible with minimal 
amounts of overlap.  By separating the software into functionally separate components, a minor 
failure in one component should not adversely affect other components. 
 
Because the software has been broken into separate modular components, the reliability of the 
software can be further improved by of the use of Test Driven Development (TDD) [16], a 
software development practice in which unit test cases are incrementally written prior to actual 
code implementation.  These unit tests are responsible for determining if the logic of a particular 
component is correct, and are run automatically by a server process each time the code base is 
changed.    
 
These automatic unit tests serve two purposes.  First, they help verify that a given software 
component is actually logically correct.  For example, the obstacle repository component in the 
autonomous software platform is responsible for detecting intersections between a given polygon 
and the set of obstacles that it contains.  To verify that this logic actually performs as expected, 
the unit test sets up several scenarios each with a given set of obstacles and then proceeds to 
verify that intersection tests with a set of test polygons perform as expected.  If the unit test is 
sufficiently thorough and a given component passes its respective tests, developers can be fairly 
certain that the logic of the software component is correct. 
 
Secondly, TDD ensures that changes made to the one part of code base do not affect other 
components that were previously working correctly.  Such errors are referred to as regression 
bugs and can be very hard to track down and fix; however, since the entire code base is tested as 
a whole each time any change is made, such bugs should be revealed as soon as they are 
introduced.   
 
To help ensure that the team’s automated unit tests thoroughly test the Urban Challenge 
software, code coverage reports are automatically generated whenever the code base is changed.  
A code coverage report identifies each line of untested code in the Urban Challenge software and 
also provides statistics on the percentage of untested code.  The developers examine these 
coverage reports frequently to determine what aspects of the code base need to be tested more 
extensively.  This results in more thorough unit tests, which in turn help to ensure that the 
software performs as expected. 
 
To make developing software for the AVS framework using these design methodologies more 
productive, the AVS software framework has been implemented using an architecture centered 
on an Inversion of Control (IoC) container [17].  Inversion of Control is a design pattern where 
the framework operates as a container that coordinates and controls execution of the individual 
application components.  An IoC framework simplifies application design because the 
framework, rather than the application, links components together and is responsible for routing 
events to the proper components in the application [18].  In the AVS framework, the IoC 
container provides all of the services necessary for a proper real-time autonomous vehicle 
application, including thread scheduling, logging services, distribution of application assets 
across a computing cluster, fault tolerance, and network communications.   
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The thread scheduling capabilities of the AVS software framework significantly enhance the 
development of autonomous vehicle applications.  For the Separation of Concerns paradigm to 
be most effective, components should be as isolated as possible.  Ideally, the components should 
be executing in parallel, rather than sequentially, so that a failure in one component does not 
cause the execution of subsequent components to be aborted.  The AVS software framework 
automatically executes each component as its own thread of execution, even across multiple 
computers, and transparently coordinates the sharing of data between the separate components.  
The AVS software can also execute these components at set frequencies under many different 
levels of processor load, which is beneficial for the many control systems needed for 
autonomous vehicle operations, as each of these control systems requires precise timing for 
accurate vehicle control. 
 
For the Urban Challenge, the AVS software will run on three dual-core embedded computers 
operating as a distributed cluster.  Each computer in the cluster runs a hard real-time operating 
system coupled with the real-time capabilities of the AVS software framework to support 
deterministic execution of autonomous applications within stringent time constraints.  Figure 3 
illustrates the improvements in time determinism shown by executing an autonomous vehicle 
application on the real-time AVS platform.  The real-time capabilities of the AVS platform allow 
autonomous applications to behave more consistently and ensure that even in the case of 
software problems, higher priority components such as safety monitors and the low-level driving 
algorithms are allowed to properly execute.  
 

 
 

 
 
Figure 3: Using GrayMatter’s AVS software architecture significantly improves the stability of running processes.  
The top chart shows the operating frequency of several critical processes with real-time support disabled.  Once real-
time support is enabled, the operating frequencies of the processes stabilize drastically as can be seen in the bottom 
chart. 

3.5.1 Urban Challenge Software Implementation 
The software logic required to successfully complete the Urban Challenge has been implemented 
as modules for the AVS software framework.  The AVS software framework executes each of 
these components with its own independent thread of execution, and it automatically manages 
dependencies between multiple components.  The following subsections describe the most 
significant software logic components that Team Gray has created to solve the problems posed 
by the Urban Challenge. 
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3.5.2 Route Planning 
Mapping of the environment and long distance route planning are important concerns in the 
design of a successful autonomous vehicle for the urban landscape. Team Gray’s design model 
separates visual mapping from logical mapping and route planning. Human operators perform 
the visual mapping task of analyzing graphical maps, aerial photography, and landmark data with 
geospatial information system (GIS) tools to build logical maps that the robot’s computer 
systems can process.  This visual mapping process is used both to build RNDF maps for testing 
and to analyze RNDF maps provided by DARPA. 
 
The logical mapping functions performed by the onboard computers include identification of 
intersection components, mapping of sensor-visible landmarks, and correction of under-defined 
map areas. Under-defined map areas consist of regions where the map provided to the robot is 
insufficiently correlated to the real-world environment. In this case the robot must explore and 
identify the area during its mission. Long distance route planning takes into account the 
constraints of the mission and the robot’s constantly changing environment to find an optimal 
route that completes its mission. Team Gray’s Urban Challenge solution seamlessly combines 
the provided mapping data with runtime logical processing to navigate a diverse range of urban 
environments. 
 
For its own internal testing, Team Gray wrote an application to quickly create logical maps on 
top of publicly available aerial photography. This application allows Team Gray to test their 
vehicle with maps similar to those that would be constructed by an operator in an actual 
deployed environment. The team has found that vitally important to the success of an 
autonomous vehicle in the real world is the human operator’s ability to create maps and missions 
for the vehicle to execute. In critical or large-scale installments, commercial GIS solutions and 
image processing can make the operator’s task of defining missions much easier. 
 
The logical map is provided to the onboard computers in DARPA’s Route Network Definition 
File (RNDF) format. A two-pass parser identifies all of the waypoints and perimeter points 
before verifying that all of the waypoint_id and perimeterpoint_id references are valid. The map 
is stored in an object-oriented adaptation of the RNDF format and includes extensions for map 
features derived from the RNDF file. 
 
The first derived feature gleaned from the data in the RNDF is the grouping of stop and 
exit/entry waypoints into intersections. An algorithm first picks any stop waypoint and then finds 
all of the exits leaving that point and entries leading to it. Next, for each exit in the intersection, 
if the waypoint following the exit is an entry, the entry/exit pair is added to the intersection. 
Likewise, for each entry in the intersection, if the waypoint preceding the entry is an exit 
waypoint, the exit/entry pair is added to the intersection. Finally, if any stops or exits are within a 
defined distance from the boundary of the intersection they are also added to the intersection. 
Provisions are made to ensure that each stop or exit only belongs to one intersection. 
 
The second derived feature is the storage of the cost associated with traveling between 
waypoints. Since the Urban Challenge event will be scored based on the time taken to complete a 
mission, the time taken to drive from one waypoint to the next is a prime candidate for the metric 
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used to pick an optimal route. Time metrics are stored in waypoint, exit and zone objects. The 
initial cost for each waypoint is calculated optimistically by dividing the segment maximum 
speed limit by the distance between the waypoint and its previous waypoint. If the waypoint is at 
the beginning of a lane it has zero cost. The cost of an exit is calculated based on the speed of the 
entry’s segment plus a fixed penalty. 
 
Team Gray’s route finding algorithm includes a learning component that enables the robot to 
become more efficient in its planning as it explores more of its environment. By recording the 
time it takes to travel between waypoints, through intersections, and across zones a route can be 
calculated that optimizes for travel time. A record of travel times is maintained for a given 
RNDF that is used across multiple missions. The traffic patterns should remain similar across 
missions, but to compensate for new areas of congestions, old observations are discredited as 
new ones are made. A weighted averages formula, as shown in Equation 1, with geometrically 
decreasing weights is used to calculate the cost of a specific travel unit. The most recent 
observation has a weight of 0.5 and the weight of each previous observation decreases by one-
half. 
 

Sn = samples 
N = num samples 
N = 1 : sum  S0 
N > 1 : sum = S0*1/(21) + S1*1/(22) + … + SN-2*1/(2N-1) + SN-1*1(2N)                            (1) 

 
The optimal route between checkpoints is determined by an A* heuristic-guided search [19]. The 
A* search algorithm maintains a priority queue of explored paths. The priorities are determined 
by the current cost of the path (g(x)) and the estimated cost to the goal (h(x)). In Team Gray’s 
implementation of A* for route planning, g(x) is the sum of the observed average travel time for 
travel units already explored. The heuristic h(x) is the straight-line distance to the goal 
checkpoint divided by the maximum speed limit for the course. This heuristic affects a behavior 
in which the most direct routes are explored first. The A* algorithm has proven to create optimal 
routes quickly and accurately in both simulation and actual testing by Team Gray during the 
development process. 
3.5.3 Variable Structure Observer (VSO) 
The main functions of the VSO are to provide information fusion and prediction of coordinates 
and trajectories for all of the stationary and moving obstacles in the autonomous vehicle’s nearby 
environment (approximately 150 meters).  The presence of the observer improves the situational 
awareness of the vehicle and provides the capability to maintain intelligent operation and 
navigation of the vehicle, even if sensor data is either temporarily lost or becomes temporarily 
unreliable.  This is extremely useful in situations where one obstacle is temporarily hidden by 
another obstacle, such as when another vehicle is driving through an intersection in front of the 
autonomous vehicle. 
 
The VSO principle is based on the idea that once the obstacle is detected by a sensor system that 
performs preliminary data processing to identify the obstacle’s position, geometry, and velocity 
vector, the VSO will automatically create an identifier for the obstacle and its mathematical 
model of motion.  The state vector of this model and its parameters will be constantly updated 
based on the incoming stream of sensor data, but if the sensor data is temporarily lost, the model 
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will continue to be simulated, thus, providing prediction of the obstacle’s position and velocity to 
enable the temporarily blinded vehicle to safely stop until the sensor data is reacquired.   
 
By running the obstacle model forwards into future time, the VSO is able to predict not only the 
current position, but also the future positions of this obstacle for the purpose of path-planning 
and speed-planning. The VSO combines the models of all obstacles in the nearby environment 
into one variable structure model of the vehicle’s operating environment, which changes 
dynamically with the environment. The dimension of the state vector of the observer constantly 
changes since the VSO will add new models for obstacles that are entering this area and remove 
obstacles when they have left the area.  The Variable Structure Observer is based on the theory 
of systems with sliding modes (see [20-28]).  Such observers allow reliable reconstruction of the 
state vector from observation data for strongly nonlinear systems in the presence of uncertainties. 
 
In actual practice, the VSO provides another significant benefit.  By including a mathematical 
model of vehicle motion in its calculations, the VSO automatically filters out fluctuations that 
can occur in sensor data.  This is particularly important with the Ibeo laser scanners, since the 
velocity vectors that they calculate can contain significant jitter.  The VSO creates a much more 
accurate velocity vector that can be better used by the other modules in the system. 

3.5.4 Path-Planning    
The route-planning module (see Section 3.5.2) is used to create a global route that the 
autonomous vehicle should generally follow, but a local path planning module, named the 
Velocity and Path Planner (VPP), is used to translate from the global route to the current local 
path.  The local path contains both the planned positions of the vehicle and the planned target 
velocities of the vehicle.  The local path can be regenerated multiple times per second as both the 
vehicle’s state and the surrounding environment changes.   
 
The VPP uses the information from the Variable Structure Observer (VSO) to plan and update 
the time-space trajectory and velocity profile of the autonomous vehicle. The optimal path 
calculation is conducted in the extended domain, which includes time-space characteristics of the 
obstacles and their future positions. The trajectory calculation is done in three steps.  
 

1. During the first step, the VPP calculates the (x,y)-space trajectory based on the provided  
GPS points from the global route. These points are then connected by a smooth curve, 
which is calculated using cubic or higher order spline interpolation.  This is done using 
standard methods ([21,29]). 

 
2. In the second step, the VPP calculates the time-optimal trajectory in the extended time-

space domain {x*(t),y*(t),t*(t)}, which satisfies the velocity constraints (maximum and 
minimum speed limits) and avoids any obstacles.  The optimal and quasi-optimal 
trajectories with the aforementioned constraints are calculated using a combination of 
calculus of variations, Bellman dynamic programming, and Pontryagin’s minimum 
principle. Pontryagin's minimum principle provides the necessary conditions for time-
optimal control in the case of control and state variable constraints (see, [30-35]). The 
calculation is done using a novel sliding mode algorithm.  

 



 

 15 of 24 

 
Figure 4: This example S-T diagram shows the original speed plan (green 
line) and the corrected path (red line) taking into account observed 
obstacles (blue shapes).  In this chart, s represents distance along the path, 
and time is the expected time to be at that point along the path. 

 
3. In the third step, the VPP uses an on-line quasi-optimal calculation of the trajectory that 

is closest to the trajectory calculated in Step 2 that satisfies acceleration/deceleration 
constraints while preserving velocity and vehicle safety. At this point, the ride comfort 
can be taken into consideration if it does not interfere with safe operation. This 
calculation is performed by the Velocity and Path Planner using novel on-line algorithms 
based on sliding mode of the higher order and its generalizations ([22,26,28]). 

 
It was proven mathematically that the designed algorithm allows complete avoidance of all types 
of obstacles, in the space-time domain (S-T domain), by altering the vehicle’s velocity.  If there 
is no mathematical solution to this problem, then the vehicle cannot avoid the obstacle by 
slowing down, so a swerving maneuver will also be needed to avoid the obstacle, if the obstacle 
is capable of being avoided.  This type of swerving maneuver will only be needed if another 
vehicle is behaving erratically. 
 
The results of the VPP are constantly evaluated to determine if a lane-change or other path-
altering maneuver should be attempted.  The goal of the VPP is to achieve optimal velocity, so it 
will attempt to pass another vehicle if it is stopped for too long or even slowed down too much 
by another vehicle.  The Mission Manager (see Section 3.5.6) is responsible for evaluating the 
results of the VPP and then determining if other path-altering actions are necessary.     
3.5.5 Steering Control System 
Team Gray spent considerable time during the development of KAT-5 developing accurate 
vehicle control algorithms.  The team’s strategy during both the 2005 Grand Challenge and the 
Urban Challenge is for the other software modules to be able to freely modify the desired path as 
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necessary to allow the vehicle to achieve its goal while avoiding any obstacles.  By following 
this design strategy, the software planning modules can generate any paths that they desire, and 
as long as they satisfy certain constraints related to curvature and velocity, the vehicle will 
accurately follow them with an extremely high level of precision.  Due to this high level of 
driving precision, the planning modules can generate paths that weave through tight fields of 
obstacles successfully.    
 
The steering control system used for the Urban Challenge is a slightly improved version of the 
control system used by Team Gray in the 2005 DARPA Grand Challenge. The steering 
controller is a lead-lag controller based upon the on the classical single-track model or bicycle 
model developed by Riekert and Schunck [36].  In the lead-lag controller, the lead compensator 
increases the responsiveness of a system while the lag compensator reduces (but does not 
eliminate) the steady state error [37]. 
 
As Figure 5 illustrates, the vehicle’s steering controller is capable of driving with extremely high 
accuracy, even in a rough environment like the 2005 DARPA Grand Challenge.  The 
modifications made since then have significantly improved controller stability and controller 
accuracy at higher speeds, which will allow the vehicle to achieve higher stable speeds during a 
winding urban course.   
 

 
Figure 5. During the 2005 DARPA Grand Challenge, Team Gray's steering controller had a standard deviation of 
just 5 cm from the desired path.  The gaps in the chart are from when the vehicle was paused by DARPA officials. 
3.5.6 Mission Manager 
Much of the higher-level processing and decision-making within GrayMatter's AVS is handled 
by the Mission Manager.  The Mission Manager coordinates between all other components 
within the AVS architecture, in addition to monitoring each component for proper operation.  
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The Mission Manager itself is designed to operate independent of component implementation, so 
that replacing one type of sensor with one of a different design will not affect proper operation of 
the vehicle. 
 
For the Urban Challenge, a specific implementation of the general purpose AVS Mission 
Manager was created to satisfy the unique requirements presented by the Urban Challenge.  
Additional capabilities were added, including the ability to handle large amounts of obstacle 
data, both moving and static, and the utilization of information from DARPA's E-Stop in 
compliance with the Urban Challenge Rules. 
 
The primary element of the Urban Challenge Mission Manager is a Finite State Machine (FSM) 
[38] that is responsible for directing the vehicle through the sequence of events necessary for 
successful completion of the mission in accordance with the rules.  An FSM is defined by a set 
of states that the vehicle can occupy and the transitions between states.  These states include such 
events as driving, passing, waiting at an intersection, and so on.  From each of these states, the 
developers define a set of "exits," which are transitions that the vehicle can perform to progress 
from one state to the other.  Such an exit could occur when a vehicle blocks the desired path, 
which may cause the vehicle to change from a "driving" state to a "passing" state. 
 
The architecture of an FSM lends itself well for adherence to traffic laws, as such rules generally 
contain very specific situations in which they are to be applied.  The FSM also allows the 
developers to reconstruct whole chains of events quickly and easily during testing and after 
missions are completed.  Since the actions of the vehicle can only be controlled by one state at a 
time, the FSM creates a chronological series of behaviors and reasons for initiating those 
behaviors that can later be analyzed for bugs and logical errors. 
 
The actual implementation of the FSM has been implemented to allow for maximum flexibility 
during development.  As opposed to implementations that require explicit coding of each state’s  
transitions, which can make modification difficult (see [39]), the architecture of the FSM within 
AVS allows a set of loosely coupled states to be "stitched together" by the FSM at run-time.  
This means that adding new transitions or states to the FSM does not require the developer to 
explicitly link the exit point from one state to the entry point of another state  The FSM 
automatically handles these tasks by using the Java programming language's reflection and 
introspection capabilities [40].  (Reflection and introspection allow a piece of software's structure 
to be ascertained on-the-fly during runtime.)  Due to this feature, the development time and 
complexity of development for the states within the FSM can be reduced substantially. 
 
In addition to containing the FSM component, the Urban Challenge Mission Manager monitors 
the Mission Planner component, which performs high-level planning based on the provided 
Mission Data File (MDF) and Route Network Definition File (RNDF).  The logic of the Mission 
Planner is described in Section 3.5.2.  Once a global plan is created that navigates the vehicle 
from waypoint to waypoint along the MDF's prescribed checkpoints, modifications to this plan 
are tracked and verified by the Mission Planner.  Finally, distribution of the most current plan to 
other components is the responsibility of the Mission Planner. 
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Yet another function of the Mission Manager is to ensure that requests from one component to 
another do not adversely affect the safe operation of the vehicle.  For instance, steering 
commands that are sent from the steering control module are first verified as appropriate for the 
vehicle's situation (speed, roll, etc.) by the Mission Manager before being passed on to the 
vehicle's actuators.  The Mission Manager also detects pause commands, and it coordinates the 
smooth stop of the vehicle. 

4 System Testing  
During the development process for the 2005 DARPA Grand Challenge, Team Gray developed 
an extensive set of system testing methodologies that helped it to succeed in the actual race.  
These testing methods were required to be as efficient as possible due to the team’s relatively 
short development timeline of six months and the team’s displacement due to Hurricane Katrina.  
These testing methods have been significantly improved during the team’s development of its 
Urban Challenge vehicle. 
 
A significant aspect of Team Gray’s testing procedures is the use of the GrayMatter AVS 
Simulator.  The GrayMatter AVS simulator is the successor to the simulation system used during 
the 2005 DARPA Grand Challenge and has been significantly improved with more accurate 
vehicle models and the support for many additional sensor types.  The AVS Simulator operates 
by transparently replacing specific sensor components with corresponding simulated sensor 
components.   
 
The simulated components are indistinguishable to the rest of the system from their real-world 
counterparts, so a majority of the software being tested is identical to the software that would be 
used during real-world autonomous operation.  In fact, in the team’s current Urban Challenge 
implementation, over 98% of the software system remains the same when running under 
simulation. 
 
In most instances, the primary components that are simulated are the GPS sensor and the 
obstacle sensors.  The simulated GPS sensor uses the output from the steering and speed control 
systems and a mathematical model of motion for the vehicle to calculate the vehicle’s new 
position and orientation.  Additional simulation options for the GPS sensor include the ability to 
add different types of noise or error into the simulated data or even random shifts in GPS output.   
 
The simulated obstacle sensors generate simulated data from multiple sources.  The simplest 
form of simulation replays sensor data captured during previous real-world testing.  This type of 
simulation has limited usefulness, and so it is primarily used to verify that the obstacle sensor 
modules are operating properly.  A more useful obstacle simulation allows the developer to 
graphically reposition obstacles in the environment in real-time or to specify a path or trajectory 
for the obstacle to follow.  A mathematical model of motion is used to accurately move the 
simulated obstacles in the environment, based upon developer-specified parameters.   
 
The most important type of obstacle simulation is based on the AVS software framework’s 
support for the simultaneous operation and monitoring of multiple autonomous vehicles.  In 
order to support running multiple autonomous vehicles safely at vehicle testing facilities, each 
AVS transmits its own location to any other AVS on the same network.  This capability is used 
to simulate multiple autonomous vehicles in an urban environment by starting individual 
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simulations at different points on the route network.  In addition, many different types of noise or 
error can be introduced into this simulated sensor and telemetry data to better test the software’s 
ability to handle sensor interference and natural environmental noise. 
 
The extensive simulation-based testing used during the development process is a direct result of 
Team Gray’s experiences during the 2005 Grand Challenge.  During that development cycle, the 
team realized that each field test became more expensive than the last in terms of time and 
resources and that a proper simulation performed at the team’s offices would more often than not 
yield very similar results.  Even with the significant emphasis the team places on simulated 
testing, it is accepted that actual field tests are irreplaceable and must occur frequently.  In 
general, field tests are only performed after the desired test has already been proven successful in 
simulation. 
 
The AVS Console was built to make the testing process (both actual field tests and simulations) 
as rapid and productive as possible.  The Console is the primary means of communication with 
the autonomous vehicle and provides a usable interface for controlling and monitoring the 
behavior of the autonomous vehicle.  Its graphical user interface is responsible for allowing users 
to launch autonomous missions, view the results of missions in real-time, and to replay previous 
missions.  Figure 6 contains a screenshot of the AVS Console that was taken during an Urban 
Challenge run.  In addition to the standard monitoring of vehicle telemetry, the Console give a 
user the capability to monitor state changes, detected obstacles, and the behavior of path- and 
speed-planning algorithms.  Also, as demonstrated in Figure 3, the AVS Console displays real-
time statistics on the average execution time and execution frequency of all of the threads in the 
system. 
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Figure 6. The AVS Console displays a real-time view of an autonomous mission, including a 3D environmental 
display and live telemetry data. 

  
During extensive field-testing, Team Gray’s autonomous vehicle system has proven itself 
capable of the precision driving needed for the Urban Challenge.  Since the path planning 
components operate most effectively when the vehicle can drive the generated paths accurately, 
particular testing emphasis has been placed on the steering controller.  Because the steering 
controller was already proven to drive with high accuracy at lower speeds during the 2005 
DARPA Grand Challenge, testing has concentrated on stressing the steering controller with 
higher speed turns.  The vehicle can now navigate turns successfully at much higher speeds due 
to the improvements in the speed controller, as shown in Figure 7.  
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Figure 7: The steering controller can maintain a standard deviation from the path of under 25 cm even while 
driving a difficult slalom course containing hairpin turns at a constant speed of 30 km/hr. 

 
In addition to the precision driving capabilities, testing has shown that the team’s data filtering 
algorithms are successful in improving the noise in its obstacle sensors.  Figure 8 shows the 
results of filtering the velocity values from an Ibeo ALASCA XT Fusion system.  The obstacle 
detection capabilities of these sensors have been extensively tested, which has shown that the 
vehicle can track moving obstacles reliably within an approximate 150-meter range.  Smaller 
stationary obstacles such as utility poles can be tracked reliably within an approximate 75-meter 
range.  These ranges will be more than adequate for avoiding obstacles during the Urban 
Challenge. 
 
The autonomous vehicle software has been tested exhaustively in simulation to detect logic 
issues when interacting with other vehicles.  These simulations have included large numbers of 
simulated vehicles interacting at intersections and sometimes behaving erratically.  Numerous 
actual field tests have verified that the simulated performance is accurate, so the team is 
confident that interaction with other vehicles during the Urban Challenge will be handled 
properly. 
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Figure 8. The velocity values provided by the Ibeo laser scanners contained significant noise that was 
successfully removed using custom filtering methods. 

 
 
5. Conclusion 
 
The Urban Challenge presents three primary challenges for autonomous vehicles: software and 
hardware reliability, accurate sensing systems, and the successful development of complex 
software systems.  Team Gray has developed an Autonomous Vehicle System that is designed to 
fulfill these design challenges.  The AVS hardware platform, which was proven successful 
during the 2005 Grand Challenge, has been improved significantly to increase its capabilities and 
reliability and to allow for simple integration of various commercial sensing systems into the 
autonomous vehicle.  Team Gray has also tested each of the selected sensor systems extensively 
and has determined that they will be capable of fulfilling the sensing requirements of the Urban 
Challenge. 
 
The AVS software framework was created specifically for the purpose of creating complex 
autonomous vehicle applications, and it has proven itself well suited to the difficult requirements 
of the Urban Challenge.  All of the custom software logic for the Urban Challenge has been 
implemented as modules hosted by the AVS software framework, which allows them to be easily 
visualized and simulated by the AVS Console.   
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Significant testing of the vehicle has shown that the vehicle is capable of performing well in 
many difficult scenarios, and progress is still actively being made on improving the performance 
of the vehicle and successfully completing all of the requirements of the 2007 DARPA Urban 
Challenge.  
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